1904/103 PHYSICS TECHNIQUES I June/July 2021 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN SCIENCE LABORATORY TECHNOLOGY

MODULE I

PHYSICS TECHNIQUES I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Non-programmable scientific calculator.

This paper consists of TWO sections; A and B.

Answer ALL questions in section A and any TWQ questions from section B in the answer booklet provided.

Each question in section A carries 4 marks while each question in section B carries 20 marks. Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (60 marks)

Answer ALL questions in this section.

1.	(a)	Define the term 'basic	e quantity of measurements'.	(2 marks)
	(b)	Give any two example	es of measurements.	(2 marks)
2.		sed in the water. Assur	e is 25.0 cm ³ . Fifty spherical balls each of radius 4 mm ming the balls do not absorb water, determine the new re	
3.	Explai	n why soap is used for	cleaning dirty clothes.	(4 marks)
4.	(a)	State any two express	sions for determining the relative density of a substance.	(2 marks)
	(b)	A room of dimensions Determine the mass o	s 4.0 m by 5.0 m by 2.5 m has air of density 1.26 kg/m ³ . of air in kg.	(2 marks)
5.	Explair stops.	n why a balloon filled	with helium gas rises up in the air to a certain height and	then (4 marks)
6.	(a)	Name two factors tha	t affect pressure exerted by a solid object on a flat surfac	e. (2 marks)
	(b)	Explain why gases are	e unsuitable for use in hydraulic systems.	(2 marks)
7.	(a)	Define the term 'mom	nent of force' and state its SI unit.	(2 marks)
	(b)	State any two applica	tions of turning effect of the force.	(2 marks)
8.			kg moving at 25 m/s and a 500 kg car moving at 14 m/s i ed in a head-on inelastic collision. Determine the:	in the
	(a)	common speed after c	collision;	(3 marks)
	(b)	direction of the vehicle	les.	(1 mark)
9.	(a)	State Newton's second	d'law of motion.	(2 marks)
	(b)	Determine the momen	ntum of a car of mass 1000 kg travelling at 30 m/s.	(2 marks)
10.	(a)	Define the term 'radia	n' as used in circular motion.	(1 mark)
	(b)	State any three factor	s affecting centripetal force.	(3 marks)

- 11. A stone of mass 0.2 kg moves in a horizontal circle of radius 0.8 m at rate of 4 revolutions per second. Determine the:
 - (a) periodic time;

(2 marks)

(b) linear speed. (2 marks)

Figure 1 shows a ray of light travelling from medium 1 to medium 2 making an angle of 12. refraction of 30°.

Fig. 1

Determine the angle of incidence $\binom{2}{1}$ $\binom{3}{2}$.

(4 marks)

13. State four uses of plane mirrors.

- (4 marks)
- A hot metal block of mass 7 kg is immersed into a vessel containing 6 kg of water at 12°C. 14. The temperature of water rises to 28°C. Assuming no heat is lost to the surrounding, calculate the initial temperature of the block.

(Specific heat capacity of the metal = 390 J/kgK, specific heat capacity of water = 4200 J/kgK) (4 marks)

- 15. Explain why liquid in glass temperatures have:
 - (a) a thin-walled glass bulb;

(2 marks)

(b) a thick glass stem.

(2 marks)

SECTION B (40 marks)

Answer any TWO questions from this section.

- 16. (a) Describe a method to determine the density of cooking oil using a measuring cylinder and an electronic balance. (6 marks)
 - (b) Table I shows results obtained in an experiment to verify Hooke's law using a helical spring.

Table I

Load (N)	0	0.3	0.6	0.9	1.2	1.5	1.6
Extension(m) x 10 ⁻⁸	0	1.2	2.4	3.6	4.8	7.1	10

(i) Plot a graph of load (y-axis) against extension.

(6 marks)

(ii) Use the graph to determine the spring's constant.

(2 marks)

(iii) Explain the shape of the graph.

(2 marks)

- (c) A rectangular block of mass 2 kg measures 30 cm by 12 cm by 4 cm. Determine the minimum pressure it can exert on a flat surface. (g = 10 N/kg) (4 marks)
- 17. (a) A balloon made of mass 9 kg has a volume of 28 cm³. It contains helium gas of density 0.18 kg/m³. Calculate:
 - (i) upthrust force;

(4 marks)

(ii) resultant upward force.

(4 marks)

(Density of air = 1.3 kg/m^3)

(b) List **four** instruments for measuring pressure.

(4 marks)

- (c) Using appropriate illustrations, explain:
 - (i) stable equilibrium;

(4 marks)

(ii) neutral equilibrium.

(4 marks)

				· 西南东西的 · 克克里斯 · 图 · 西南 · 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图 ·			
	(b)			Il of water appears to be 8.0 cm from the bottom. The speed of 2.25×10^8 m/s and 3.0×10^8 m/s respectively. Determine the:			
		(i)	refractive in	lex of water;	(2 marks)		
		(ii)	actual depth	of the pool;	(2 marks)		
		(iii)	vertical disp	acement.	(2 marks)		
	(c)		dy of mass 150 n/s. Calculate t	0 g is moving in a circle of radius 1.3 m at a uniform vhe:	elocity of		
		(i)	acceleration	of the body;	(2 marks)		
		(ii)	centripetal fo	orce acting on the body.	(3 marks)		
1	(d)	(i)	State Boyle's	s law.	(1 mark)		
		(ii)	$1.0 \times 10^5 \text{Pa}.$	lloon contains one litre of hydrogen at 27°C and press. The balloon rises to a height where the pressure and toome 8.0 x 10 ⁴ Pa and 5°C respectively. Calculate the cm ³ .	emperature		
19.	(a)	State	the SI unit of s	pecific latent heat of fusion.	(1 mark)		
	(b)	An aluminium mass of 40 g is heated to 200°C and then quickly immersed in 160 g of water contained in a copper calorimeter of mass 24.0 g. The initial and final temperatures of water are 12°C and 21.8°C respectively. Calculate the specific heat capacity of aluminium. Assume no heat is lost.					
		(Spec	eifiç heat capaci	ty of copper = 390 J/kgK)	(7 marks)		
	(c)	Expla	nin why:				
		(i)	a bucket of w	ater can swing in a vertical circle without spilling;	(3 marks)		
		(ii)	a cyclist mak	es a turn on a circular bend inwardly.	(3 marks)		
	(d)	A stor	ne of mass 0.6 I contact with the	g moving horizontally at velocity of 12 m/s hits a wal wall for 0.3 seconds before dropping. Calculate the:	1. The stone		
	3	(i)	impulse exert	ed on the wall;	(3 marks)		
		(ii)	impulsive for	ce applied on the stone by the wall.	(3 marks)		
		*	THIS	IS THE LAST PRINTED PAGE.			

(2 marks)

State the laws of reflection of light.

18.

(a)

1904/103 June/July 2021